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Background

A Survey on Large Language Model based Autonomous Agents



Limitation

However, these efforts have largely been 
piecemeal, lacking a systematic framework for 

constructing a fully-fledged language agent. 



Production System



Production systems for string manipulation
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Control flow: From strings to algorithms
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Rules

Simple productions can result in complex behavior



String rewriting to logical operations

• preconditions could be checked against the agent’s goals and world state
• actions that should be taken if the preconditions were satisfied.

a simple production system to describe the operation of a thermostat



Cognitive architectures: From algorithms to agents
(Soar architecture)

Working memory reflects the agent’s current circumstances: it 
stores the agent’s recent perceptual input, goals, and results 
from intermediate, internal reasoning.

Long term memory is divided into three distinct types. 
• Procedural memory stores the production system itself: 

the set of rules that can be applied to working memory 
to determine the agent’s behavior. 

• Semantic memory stores facts about the world
• Episodic memory stores sequences of the agent’s past 

behaviors

Grounding a variety of sensors stream perceptual input into 
working memory, where it is available for decision making.
Learning: (1) facts can be written to semantic memory, while 
experiences can be written to episodic memory (2) Second, 
behaviors can be modified.



Cognitive architectures: From algorithms to agents
(Soar architecture)

Decision making



Connections between Language Models and 
Production Systems

• Language models as probabilistic production systems
• Language models also define a possible set of expansions or modifications of a 

string – the prompt provided to the model.
• LLMs can thus be viewed as probabilistic production systems that sample a 

possible completion each time they are called, e.g., X∼∼▸X Y.

• Prompt engineering as control flow



Cognitive Architectures for Language Agents 
(CoALA): 

A Conceptual Framework

🐨



Towards cognitive language agents
Large Language Model

Language Agent

Cognitive Language Agent



Cognitive Architectures for Language Agents (CoALA): 
A Conceptual Framework



Memory

Working Memory.

Working memory maintains active and 
readily available information as symbolic 
variables for the current decision cycle

This includes:

• perceptual inputs from grounding
• knowledge generated by reasoning

• knowledge retrieved from long-term 
memory

• other core information carried over 
from the previous decision cycle



Episodic Memory

Episodic Memory.

Episodic memory stores experience from 
earlier decision cycles.

This includes:
• training input-output pairs 

• history event flows 
• game trajectories from previous episodes 

• other representations of the agent’s 
experiences.

An agent can also write new experiences 
from working to episodic memory as a 
form of learning



Semantic Memory

Semantic Memory.

Stores an agent’s knowledge about the 
world and itself.

Language agents may also write new 
knowledge obtained from LLM reasoning 
into semantic memory as a form of 
learning to incrementally build up world 
knowledge from experience.



Procedural Memory

Procedural Memory.

Language agents contain two forms of 
procedural memory: 

• implicit knowledge stored in the LLM 
weights

• explicit knowledge written in the agent’s 
code.
• procedures that implement actions (reasoning, 

retrieval, grounding, and learning procedures)
• procedures that implement decision making 

itself



Grounding Actions

Text Game
Grounding procedures execute external 
actions and process environmental 
feedback into working memory as text.



Grounding Actions

Physical environments

Physical embodiment is the oldest 
instantiation envisioned for AI agents

It involves processing perceptual inputs 
(visual, audio, tactile) into textual 
observations (e.g., via pre-trained 
captioning models), and affecting the 
physical environments via robotic planners 
that take language-based commands.



Grounding Actions

Dialogue with humans or other agents

• Interaction among multiple language 
agents

• Debate
• Collabrative task solving



Grounding Actions

Digital environments

• Interacting with games
• Interacting with APIs

• Interacting with websites
• General code execution



Retrieval Actions
read long-term memory

A retrieval procedure reads information 
from long-term memories into working 
memory

Generative Agents (Park et al., 2023) retrieves 
relevant events from episodic memory via a 
combination of recency (rule-based), 
importance (reasoning-based), and relevance 
(embedding-based) scores.



Reasoning actions
update working memory

Reasoning allows language agents to process 
the contents of working memory to generate 
new information

Reasoning reads from and writes to working 
memory.

This allows the agent to summarize and distill 
insights about 
• the most recent observation 
• the most recent trajectory
• information retrieved from long-term 

memory

Reasoning can be used to support learning (by 
writing the results into long-term memory) or 
decision-making (by using the results as 
additional context for subsequent LLM calls).



Learning Actions
write long-term memory

Learning occurs by writing information to 
long-term memory

Updating episodic memory with experience
• For language agents, added experiences in episodic 

memory may be retrieved later as examples and 
bases for reasoning or decision making

Updating semantic memory with knowledge
• Work in robotics uses vision-language models to 

build a semantic map of the environment, which 
can later be queried to execute instructions.



Learning actions
write long-term memory

Learning occurs by writing information to 
long-term memory

Updating LLM parameters (procedural memory)
The LLM weights represent implicit procedural 
knowledge.

These can be adjusted to an agent’s domain by fine-
tuning during the agent’s lifetime. Such fine-tuning can 
be accomplished via supervised or imitation learning 
(Hussein et al., 2017), reinforcement learning (RL) 
from environment feedback (Sutton and Barto, 2018), 
human feedback (RLHF) (Christiano et al., 2017; 
Ouyang et al., 2022; Nakano et al., 2021), or AI 
feedback (Bai et al., 2022).



Learning actions
write long-term memory

Learning occurs by writing information to 
long-term memory

Updating agent code (procedural memory).
CoALA allows agents to update their source code.

• Updating reasoning (e.g., prompt templates). Such 
a prompt update can be seen as a form of learning 
to reason.

• Updating grounding (e.g., code-based skills) 
Voyager (Wang et al., 2023a) maintains a 
curriculum library.

• Updating retrieval.
• Updating learning or decision-making. (updates to 

these procedures are risky both for the agent’s 
functionality and alignment.)



Decision making



Actionable Insights

• Working memory and reasoning: thinking beyond LLM prompt engineering.
• The community should think about a structured working memory and systematic “reasoning” actions 

that update working memory variables.
• Long-term memory: thinking beyond retrieval augmentation.

• By organically combining existing human knowledge with self-discovered and self-maintained 
experience, knowledge, and skills in long-term memory, future language agents may more efficiently 
learn and solve tasks.

• Learning: thinking beyond in-context learning or finetuning.
• future directions could explore learning smaller models for specific reasoning needs, deleting unneeded 

memory items for “unlearning”, and various ways to combine multiple forms of learning.
• Action space: thinking beyond external tools or actions

• clear and task-suitable action space, agent safety
• Decision making: thinking beyond action generation.

• extend such schemes to more complicated tasks, LLM development might be influenced or even shaped 
by the increased usage of reasoning toward complex decision making



Discussion

• Internal vs. external actions: what is the boundary between an agent and its environment?
• is a Wikipedia database an internal semantic memory or an external digital environment?
• Wikipedia is an external environment if constantly modified by other users, but an offline version that 

only the agent may write to can be considered an internal memory.

• Planning vs. execution: how much should agents plan?
• Future work should develop mechanisms to estimate the utility of planning and modify the decision 

procedure accordingly

• Learning vs. acting: how should agents continuously and autonomously learn?
• Learning could be proposed as a possible action during regular decision-making

• LLMs vs. code: where should agents rely on each?
• CoALA thus suggests that good design uses agent code primarily to implement classic, generic planning 

algorithms – and relies heavily on the LLM for action proposal and evaluation.



Conclusion


